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POST-BUCKLING ANALYSIS OF AN ELASTICALLY·
RESTRAINED COLUMNt

R. HAFTKAt and W. NACHBAR§

Department of the Aerospace and Mechanical Engineering Sciences,
University of California, San Diego, La Jolla. California

Abstract-The nonlinear problem of the asymmetric snap-through buckling of a cantilever column that is
restrained at its tip by a stiff, inclined wire, and is loaded laterally by a tip force, admits an exact solution which
was determined previously. The structure was found to be imperfection-sensitive if one considers the eom
bined extensional stiffnesses of the wire and of the column eenterline to play the role of an imperfection. The
same problem is now solved using the general Koiter method ofanalysis for the near post-buckling equilibrium.
This present result for the post-buckling load vs. deflection relation for the "perfect structure" (infinite ex
tensional stiffnesses) is shown to be an asymptotic representation of the corresponding exact result
for vanishingly small deflection. At positive deflection, the approximate values for load in the asymptotic repre
sentation are less than the exact values. A similar conclusion is drawn fOJ the buckling load vs. imperfection
amplitude relation for the imperfect structure (finite extensional stiffnesses).

NOTATION
cross-sectional area
defined by equations (35c, d)
length of undeformed wire
length of deformed wire
defined by equation (56b)
amplitude of the linear buckling mode
end.shortening of column, equation (3)
Young's modulus
linear strain of column centerline, equation (7b)
strain in wire, equation (2)

ew sin· 0, equation (7a)
lateral force applied to column
defined by equation (20<1)
nondimensional applied force to column, equation (8a)
moment of inertia
nondimensional Lagrange multipliers, equations (8b, c)
defined by equation (16)
length of undeformed centerline of column
axial compressive force on column
second and third ordeJ terms in the potential energy
tensile force in wire
displacement of the column centerline in the X direction

VII
total potential energy
defined by equation (4)
nondimensional potential energy, equation (9)
potential energy with K = K(y); equation (17a)
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Subscripts
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w
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coordinate along column centerline
== X/I
lateral displacement of column centerline
== Y/I
linear buckling solution for perfect structure, equation (28b)
nondimensionalload parameter, equation (31)
Lagrange multiplier, equation (4)
== y(l) tan (J == Y,/I tan (J; tip deflection parameter
first variation of V,
a small number
admissible variation of y(x)
angle between wire and horizontal in the undeformed state; see Fig. I
deformed value of (J

axial compressive stiffness parameter of the column centerline, equation (42b)
total elastic compliance parameter, equation (56a)
elastic compliance parameter of the wire, equation (42a)
shape of linear buckling solution: YB = ell'

classical value for buckling
critical value for snap-through
wire
values for finite elastic compliance
values at x = 1

1. INTRODUCTION

THE PROBLEM of buckling of a cantilever column restrained by a stiff wire inclined at an
angle 0, and loaded by a lateral tip force F (see Fig. 1), was solved exactly in [1]. It was
shown that the combined extensional stiffnesses ofthe column centerline and the restraining
wire can be considered to act as imperfections to a "perfect" structure that has an in
extensible centerline and is restrained by an inextensible wire. It was found that the snap
through buckling load of the "imperfect" structure is sensitive to such imperfections.
The two extensional stiffnesses are combined in a nondimensional parameter p. In [1],
the problem was solved for finite stiffnesses (J.l > 0), and the solution for infinite stiffnesses
was found by going to the limit (J.l -> 0).

IX

y

FIG. I. Geometry of column restrained by an inclined wire and loaded by a lateral tip force F.
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A general study of the local character of critical points in the theory of elastic stability,
in particular with regard to post-buckling behavior and the effects of initial imperfections,
has been developed by Koiter [2]. Further development of the theory for systems des
cribed by a finite number of generalized coordinates has been made recently by
Thompson [3,4] and by Roorda [5,6]. In the more general terminology, as is used for
example by Thompson [4], critical points of "perfect" structures are called branching
points or points of bifurcation. There are three general types of branching points: (a)
asymmetric; (b) stable symmetric; (c) unstable symmetric.

In the present problem for the inextensible centerline and wire, J1 = 0, the branching
point is asymmetric; the problem treated in [1] and in this paper is a simple illustration
of a continuous elastic structure that exhibits an asymmetric point of bifurcation. For J1
positive but small compared to unity, the equilibrium paths in the load vs. deflection
plane are close to those found for the inextensible wire. For the imperfect structure,
J1 > 0, the critical points are of the snap-through type.

In this paper, the problem of Fig. 1 is solved using Koiter's method for post-buckling
analysis as, for example, [7]. In this method, the buckling mode for the perfect structure
is found by making an energy functional stationary subject to the nonlinear constraint
of the wire. It was assumed in [1], for J1 sufficiently small, that the linear bending approxi
mation is adequate for representation of the energy. The geometrical nonlinearity, which
is essential for the snap-through instability, arises in this problem from the nonlinear
constraint imposed by the wire. The buckling mode is then substituted back into the energy
functional in order to find the near post-buckling behavior and the imperfection sensitivity
of the structure.

The results obtained by Koiter's method agree very well with results presented in [1];
these results give asymptotic representations of the exact solution when the post-buckling
deflection or the imperfection tend to zero. This is verified in Appendices A and B, in
which the asymptotic expressions for the post-buckling behavior and imperfection
sensitivity of the structure are obtained from the exact expressions found in [1].

The specific methods developed for systems described by a finite number of generalized
coordinates can also be applied to this problem and yield the same results. In Appendix C,
the method of Roorda [6] is demonstrated.

These results offer a transparent example of the application of Koiter's method to a
simple problem and, additionally, introduce two points that are perhaps novel. The
first point is the use of the method for imperfections that are not geometric. The second
point is that the method is applied to a case where the energy functional for the perfect
structure is not found as the limit of the functional for the imperfect structure as J1 tends
to zero. This is the case where a nonlinear kinematic constraint, included in the functional
by use of a Lagrange multiplier, necessitates as a first step the elimination of the multiplier
before the energy functional can be written in the usual form.

2. ENERGY FUNCTIONAL FOR THE PERFECT STRUCTURE

For the perfect structure (Fig. 1), the total potential energy V is

(1)



1436 R. HAFTKA and W. NACHBAR

(3)

With the wire and column centerline both inextensible, the prebuckling displacements
are zero. Buckling will occur when, for a nontrivial displacement Y(X). 1/ is stationan
subject to the following two constraints: the strain ew in the wire is zero for this displace
ment, where, as in [I].

ew = 1-1 sin 2 O{Y(l) cot 0- V(l)+(2/)-1[Y(l)F+(21)-I[V(l)]2l= () (2)

the end-shortening d of the column centerline is zero for this displacement, where

1 fld = V(l)- [dY(X)/dXF dX = O.
2 0

With the introduction of the Lagrange multipliers ex and {3, we then seek to make the
functional V stationary, where

V:= V+ exe w + {3d.

With use of nondimensional variables

(4)

x:= X/I, y(x) := Y II, u(x) := VII (5)

we can write, with primes denoting x-differentiation.

- EI[fl 2FI
2

2exl sin
2 e 2{3e JV = - VY dx--y(l)+------e 1+-e

21 0 El El w El

where the strain parameters ewl and e are defined as

1 fl '2 de:= u(l)-- (y) x.
2 0

(6)

(7a)

(7b)

Equation (6) takes a more convenient form with the introduction of the following para
meters:

FI2

f':= ·-tan 0
. El

exl sin2 0
K := --------EI

Pl2
J:=-

El

21V
VI :=£j"

The functional VI can then be expressed as

VI = f (y'Ydx-2fy(1)cotO+2Kew l+ 2Je.

(Sa)

(8b)

(Sc)

(8d)

(9)
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Let y(x) be a function for which Vt is stationary, and let Y(x) = y(x) +el1(x), with lei « 1
and l1(X) an admissible variation. Then a necessary condition for stationary Vt ,

(lOa)

is

Further conditions at e = 0 are

(lOb)

oVt
ou(l) = 0,

oVl = 0
oK '

oVI = O.
oj (l0e, d, e)

(11)

Application of equation (10e) to equation (9), with use of equations (7a, b), gives

oVl
ou(l) = 2K[ -1 +u(l)] +2J = O.

However, the assumptions of linear bending theory and small strains, that have already
been adopted, imply that, for consistency, we must set

l-u(l) == 1.

Hence, in view of this, equation (11) gives

K =J.

(12)

(13)

(14)

Equation (lOb) when applied to equation (9), together with equations (7a, b) and
equation (13), gives the following variational equation to determine y(x):

f (y"rt" - KY'l1') dx + l1(1){K[Y(l) +cot 0]-f cot O} = O.

At x 0 we assume clamped conditions, while at x = 1, equation (14) gives the natural
boundary conditions. From equation (14) we get the Euler-Lagrange differential equation
for y(x),

y""+Ky" = 0, O<x<l (15a)

and the following four boundary conditions:

y=I=O ~x=O

y" = 0 }
at x = 1.

yff! +fcot O-K(y+cot O-y') = 0

In addition, the two constraints

1IIe = u(l)-2 0 (1)2 dx = 0

are to be satisfied; this also follows from equations (lOd, e).

(15b,c)

(15d, e)

(15f)

(15g)
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3. BUCKLING AND POST-BUCKLING OF THE PERFECT STRUCf(JRF:

The exact solution satisfying equations (15ag) was found in Section 4 of I , there
it was determined using the limiting case of infinite stiffnesses for an elastic wire and an
elastic column centerline, To use the Koiter technique in the present problem, in which
infinite stiffnesses (zero compliances) have already been assumed, it is necessary to elimi,
nate the Lagrange multipliers K and J from the expression for the energy functional,
equation (9), For this, we use the equilibrium conditions, equations (IT) and 115d). to
write

K = J = K(y) =: ~'"'(1) +j cot ()
y(l)+ cot 0 - y'( 1)

With this substitution into equation (9), the functional V!(y) is formed,

Vi(y) = Sol (y")2 dx - 2fy(1) cot 0+ 2K(y)(ew 1+ e)

where, with use of equation (15g),

( 16)

(l7aj

(l7b)

It is easily verified that the functionals V!(y) and VI (y) have the same extremum y(x),

which is the solution to equations (15a--g). Hence, in place of equation (lOa), we seek to
make

6Vj(y) = O. (18)

For y and y' sufficiently small, K(y) can be represented by a power series, and the
functional V*(y) can then be rearranged, grouping together terms of equal degree in y
or y-derivatives, i.e.

(19)

We write

[cot O+y(1)-y'(1lr 1 = (cotO)-I[J +.~-.-1'il-l
cot 0

= tan O{1- [y(l)- y'(I)J tan ()

+ [y(1) - y'(l)f tan 2
() - ... )

and substitute into equation (16). Then, if the Qi(Y) are polynomials, homogeneous of
degree i, in y and y-derivatives, we can write

(20a)
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where [setting y(1) = Yl' y'(l) = y'I' etc.J,

QI(Y) = fYI cot G

Q2(Y) = YI[y't-f(YI-y~)J

+~ f[Yi - f (y')2 dXJ

Q3(Y) = ~f (y'f dx(y'{' +fy~) tan e

+y l F2(YI, y'l' Y~')·

1439

(20b)

(20c)

(20d)

(22)

In equation (2Od), F2 ,is a homogeneous polynomial, of second degree in its arguments,
whose further expression is not necessary. Substitution from equations (20) into equa
tions (17a, b) and comparison with equation (19) gives

P2(Y) = f (y'Y dx +2Q2(Y) = f>(y lI )2 - f(y'fJ dx +Yl[2y't +f(2Y'1 - YI)] (21)

P3(Y) = 2Q3(Y) = - tan G(y'{' +NI)LI

(y')2 dx +2Yl F2.

The buckling load and buckling modes are then found from the stationary condition
{[I OJ, equation (3.5.3)),

(23a)

together with the constraint, equation (15f), which is reduced to lowest degree for small Y,
VIZ.

Yl = O.

Equations (21) and (23a, b) give the following differential equation

(23b)

and the boundary conditions

y'1If+Iy" 0,

y=y'=O

Y" = Y = 0

0<x<1

at x = 0

at x = 1.

(24a)

(24b, c)

(24d, e)

The solution of equation (24a) that also satisfies equations (24b, c, d) is

y(x) = C{sin J f-sin[J f(l-x)J-J Ix cos J.f}.

Condition (24e) becomes, upon substitution from equation (25),

sin J f - J f cos J I = o.

The smallest positive root of equation (26) is f =!c,

!c = 20·19

(25)

(26)

(27)
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which is the nondimensional buckling load. The buckling solution Y = YB(X) and buckling
mode cp(x) are

cp(x) = sin.J.f~-sin[.J.f~(1-x)J- .f~xcos-Jf

YB(X) == Ccp(x).

(2Hal

(nb)

The next approximation to equation (18) for small-deflection post-buckling represen
tation is

(29a)

(29b)

The solution to equation (29a) must also satisfy the constraints, equation (l5f, g), to the
same order of approximation, viz.

1II '2 1 2YI cot8-
J

(y) dX+-YI = O.
- 0 2

In Koiter's method, the variational equation (29a) is approximated by the condition

which is asymptotically valid as the amplitude C and the parameter z,

fz == 1--0

-

(

DO)

(31 )

are each small compared to one. The square bracketed term in equation (30) is evaluated
with the use of equations (28a, b) and the repeated use of equation (26) as an identity in j~.

Since cp(l) = 0, we obtain from equations (21) and (22),

P2(Ccp) = c2 II [(cp,y _f(cp')2] dx
o

P3(Ccp) = -tan8C3 (cp';'+fCP'dI
I

(cp')2dx.
o

From equations (28a) and (26),

II II 0 0 I
o (cp')2 dx = 0 [.J fc{ cos[.J .f~(l- x)] - cos vi f~ J]2 dx = 2.f~ sin2

,jj~

II II 0 1
(cp")2 dx = {.f~ sin[.J.f~(l-x)]}2 dx = 2f ; sin2 J.f~

o 0

cp'(l) = Jfc-sin,./.f~

cp"'(1) = - It.

Therefore, from equations (32),

P2(Ccp) = ~zC2r; sin 2 vi .t;

P3(Ccp) = iC3 r; tan 8 sin 3 -J .f~.

(32al

(32b)

(33a)

(33b)

(33c)

(33d)

(34a)

(34b)



Post-buckling analysis of an elastically-restrained column 1441

By writing equations (34a, b) equivalently as

PZ(YB) :; A 2 ( 1-~)cz, P3(YB) A 3C
3 (35a, b)

with

A - lfz . z)1'
Z ="2 c sm Jc

A 3 :; tf~ tan esin3 J fc
the post-buckling condition, equation (30), is written

ddC[ Az( l-i-)C Z +A3C3J 0.
For C #= 0, equation (36a) gives

(35c)

(35d)

(36)

(37)C 2AZ(I_L ).
3 A 3 fc

Since Az > 0 but A 3 < 0, because the angle .J fc (rad.) is in the third quadrant, then C
is positive for 0 < f < fc. The tip deflection parameter b.

o y(l)tan e (38)

(41)

as a function of C is obtained from equation (29b) by putting Y = YB(X) in the integral, viz.

Yi+2Ylcote-~CZf(<p!)ZdX O. (39)

The root of equation (39) which vanishes for C = 0 is

Yl = tan 8(!CZ fcsinz.J fc)+O(C4
). (40)

By combining equations (37), (38) and (40) to eliminate C, we obtain

f 1_3.Jb
fc .Jfc

4. IMPERFECTION SENSITIVITY

As shown in [1], the elastic extensional compliance of the wire and the elastic axial
compressive compliance of the column play the role here of imperfection parameters,
because, in the limit as these parameters tend towards zero, the solution for the elastic
case approaches that for the inextensible case discussed in the preceding section. It will
now be shown that the results from the inextensible case can be used to determine an
asymptotically valid formula for the critical snap-through load fcr in the elastic case.

Consider now the nondimensional form V;e of the strain energy for the elastic case;
the same nondimensional nomenclature is used as previously, with the additional defini
tions now of the wire compliance parameter v,

1 EwAwP sin3 e
v- (42a)

EI
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and the axial stiffness parameter). for the column,

. £A/2

Ie "'" £1 ;42\;1

Then J!;c is a functional of y(x) and u{x) and is defined by

V;e = L(y")2dx+;~L lU'-~(y')2r dx+v'le~1 2/j;(l)cotil. (43)

From the Schwarz Inequality, and the condition that u(O) 0, we find that

,
e-. (44)

The functional V~, defined by

V i~ = L(y")2 dx + ),e
2+ II Ie?,. -- 2jy(1) cot 0 (45/

bears the following relationship to J!;e' assuming that )., VI, f and (} are the same for
each:

1. For every admissible y(x) and u(x), }-ie :?: V~.

2. J!;e and Vie have the same equilibrium states.

3. At an equilibrium state u(x) and y(x), J!;" = V~.

Conclusion (1) follows at once from inequality (44). The Euler·~Lagrange equations for
V~ can be readily shown to be equal to those given in [l] for T/i". Finally, the equilibrium
conditions can be shown to lead [with u(O) OJ to

u' _!(y')2 = consL e, 0<,«1 (46)

whereupon it is seen that the strict equality holds in (44) for equilibrium. From these
remarks, it is seen that if V;" is positive definite in a neigh borhood of the function space
about the equilibrium solutions u(x) and y(x), then V~ is positive definite also in the same
neighborhood.

Now compare Vi~ with VI' equation (9). We know [4J that the nondimensionaJ La
grange multiplier K must be, in a dimensionless form, the force in the wire that imposes
the constraint ewl = O. It also follows by continuity arguments that K is the limit of the
force in the wire for the case of vanishing wire and column compliance, viz. for

and A-I ...... O.

This means the the nondimensional force v' 1 ewl in the elastic wire must be gIven
asymptotically, for small v and A- I, by

vIewI = K [l + O(v.;. 1)]. (47al

Similarly, the nondimensional axial force I.e in the column is given asymptotically, for
small l' and A- I, by

I.e = J[t +O(V,)e 1)]. (47b)

The physical meaning of equations (47a, b) is readily detived. From the form of equa
tion (4), it is evident that rx must be equal to the product of the force T in the wire by the
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length a of the wire, i.e.

a = Ta = Tl/sin e.

1443

(48)

Therefore, from equation (8b),

K
1sin2eex = 12 sin eT.

EI EI
(49a)

If the force in the elastic wire is called Te, then Te EwAwew, and

_ 1 EwAw12 sin3 e ew 12 sin eT
v ewl = ----'m--· sin2 e = EI e' (49b)

Upon substitution from equations (49a, b), equation (47a) takes the form

Te = T[l+O(v,,i-l)]. (49c)

Similarly, for the rigid centerline on the column, {3 must equal the axial compressive
force P in the column; then, from equation (8c)

P12

J = EI' (50a)

On the other hand, the elastic column axial force Pe is given by Pe EAe, and also

EAl2 PI2

,ie =--e = -. (50b)
E1 E1

Hence, we get a formula similar to equation (49c):

Pe = P[l+O(V,,i-l)]. (5Oc)

In view of equations (47a) and (47b), and the conditiont K = J, equation (45) becomes

Vi: = yt-K(e+ew lHI O(v,..1.- 1
)]. (51)

But

Then

ew1 vK[1+0(v,;'-1)]

e ,i- 1K[1+0(v,..1.- 1)].

(52a)

(52b)

V~ = yt-(v+..1.- 1)K2{1-[O(v,r 1)f}. (53)

For K 2 in equation (53) we substitute [K(y)]2 from equation (16), and set y = YB with C
to be determined. We find that

(54)

+ higher order terms in z and C. For z i= 0, the amplitude C has a nonzero limit as (v +..1. - 1)

tends to zero [i.e. the limit found in equation (37)]. Hence, only terms of lowest order in
the small quantities C and z need be retained in [K(y)]2 when equation (35) is combined
with equation (54) to obtain the following asymptotic expression for the total potential

t See Appendix A of [1] for proof that Pe ~ sin () generally for small strains.
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energy in equation (53):

R. HAFTKA and W. NACHBAR

where

/1 == (v +r [)tan 2 (J

B[ == 2f~sin.Jfccot(J.

(55i

(56a)

(56b)

The conditions for a stationary pointf = .f~" C = Ccr on the load vs. deflection curve
.f vs. C follow from equation (55):

The solution of equations (57a, b) that gives positive Ccr for /1 > 0 is

(57a)

(57b)

Zcr = (58a)

(58b)

The instability of equilibrium at Ie" Ccr can be shown to follow directly from equa
tions (57a, b), since, for Z = Zcr and arbitrary C, the total potential energy can be written as

(59)

The cubic form indicates that the total potential energy is not a minimum at C = Ccr'
and instability of equilibrium at Ier' Ccr then follows immediately from the theorem of
Cetaev [11].

We determine Ier by substitution into equation (36a) from equations (21b), (21d) and
(34c); thus we get the equation for imperfection sensitivity of the snap-through load,

j~r 1 2 /3
j~ = - v /1. (60)

This is exactly the asymptotic expression ofIerl Ie for /1 --> 0 that is derived in Appendix B
below from the results of [1].

5. NUMERICAL RESULTS AND DISCUSSION

The results for the post-buckling equilibrium of the "perfect" structure, equation (41),
are shown in Fig. 2 and compared to corresponding results from [1]. Figure 3 gives a
similar comparison for the imperfection sensitivity of the snap-through load, equa
tion (60), again with good agreement.
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FIG. 2. Comparison between exact and asymptotic solutions for the post-buckling equilibrium of the
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FIG. 3. Comparison between exact and asymptotic solutions for the buckling loadfc, of columns with
elastic parameter Jl > O.
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APPENDIX A

Post-buckling behavior from [1]

An asymptotic expression, valid for (j -> 0, is derived from the exact solution for the
post-buckling equilibrium load 1 vs. tip deflection (; as given parametrically in K by two
functions 15 = (;+(K), 1 = f+(K) that are equations (28a) and (28b) of [1]:

Ki
(;+(K) = 2- (Ala)

K2

f+(K) = K2( 1+2.K~s2~n/() (Alb)

KI(K) =sinK-KcosK

K2(K) = iK2 sin2 K +:l:K sin 2/(.

(Ale)

(A ld)

Let Kc be the critical value of K, [K I (Kc) = 0]. For Kclose to Kc , we can assume that A =Kc - h'

is also small, and we have
K I (/():::::: AK~ cos K,

K 2(K):::::: K 2(Kc) = 1x; cos2 Kc •

So, asymptotic expressions are
J +(K) :::::: 4A2

I+(K) = (K,-A)2(l-4A) :::::: K~ -MKc '

Substituting equation (A4) into equation (AS), we get

f~(K) = KZ( l-~c~J)·

Since KZ =!c, then equation (A6) becomes equation (41).

APPENDIX B

Imperfection sensitivity from [1]

For small positive values of the imperfection parameter fJ-, we seek to write

f~r = .f~(l - BJiY)

(A2l

(A3)

(A4l

(AS)

(A6)

(Bl)
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(B2a)

(B2b)

where}' and B are constants. For /l > 0, the pre-buckling equilibrium relation between
6 andfis given parametrically in Kby two functions 6 = 6_(K),f = f-(K) that are equations
(25) and (26) of [1]:

6_(K) = ~:[1- (1-2/lKZ~frJ

f ( ) - Z[l 6_(K) sin KJ
- K - K + K

1
.

Here, K 1 and K z are defined in equations (Ale, d) above. Upon combining equations
(B2a, b), we get

f-(K) = KZ{1+s~zK[Kl-(Ki-2/lKZKz)t]}. (B3)

Since buckling occurs when df/d6 = 0, then the critical value of K is the smallest positive
root of the equation

df-(Ker) = 0
dK .

The buckling load fer is therefore given by

Equations (B4) and (B5) apply for /l > 0; for /l = 0, Ke = 4·4938 and

f-(Ke) = fe = K~ = 20·19.

For small /l, we can assume that

is also small. Hence, [using the fact that K1(KJ = OJ,

Substituting equations (B8a, b) into equation (B3), we have

f - (Ker) = f(Ke - Ii) == f*(Ii)

and

(B4)

(B5)

(B6)

(B7)

(B8a)

(B8b)

f *( A) ( Z { 2 sin Ke Z }
L.l ~ Ke-li) 1+ 4 Z [-KeCOSKeli-(K:COSzKeliz-/lK~COSzKJ!J

Ke cos K e

~ (Ke - Ii)Z {1 + ~e [ - Ii + (liZ - /lK~)t]}

~ K~ - 4liKe+2Kc(1i Z - /lKDt. (B9)

Equation (B4) is equivalent to

(B10)
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Since A > 0, equation (B10) implies

A = ~KcJ3,u.

Substituting back into equation (B9), we obtain

/~r = K~(1-2J3,u). (Blli

(CI)

This expression and equation (A7) previous are asymptotic, of course, because in their
derivation terms of order A2 were neglected in comparison to terms of order A.

APPENDIX C

Results obtained by use of Roorda's method [6]

Let the amplitude C of the linear buckling mode shape, equation (20), be taken as
the single principal generalized coordinate Ul in accordance with the development and
notation in [6]. The equilibrium equation in the notation of equation (10) of [6] is:

(1 1 2
::;--(Spo+p) = SU 1cD+2,(SUIU1Ul Ul +2SpUIU1PU1) = O.
uU 1 .

The equivalence of this equation to equation (57a) in our paper is seen by the following
correlation of nomenclature (our nomenclature is on the left):

C = Ul

VI +AVI = SPo + P+certain terms independent of U 1

,u = I:

from which it follows from equation (CI) and equation (57a) that

2A 2 = - SPU1Ul

3A 3 = tSUIUIUl

Equation (l1b) of [6], correcting the misprint in [6], is

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(C2)

(C3)

Substitution from equation (C2) into equation (C3) gives the equilibrium equation for
the slope of the initial post-buckling path for the ideal structure (f. = 0) as

C = 2A 2 (L_ I ) (C4)
3A 3 /;

which is the same as our equation (23).



Post-buckling analysis of an elastically-restrained column 1449

For the slightly imperfect structure, e > 0, equation (Cl) defines an equilibrium path
p(u t ) along which the stationary value of p is p* at U t = ut :

ut (C5)

Substitution for ut in equation (Cl) gives the stationary value for p* {ef. equation (14)
of [6]},

(C6)

that is a necessary condition for snap-through. With proper choice of sign, equation (C6)
is seen to be identical to equation (58a). The form taken by equation (58a), especially the
dependence of the snap-through load on the square root of the imperfection for small
imperfections, is to be expected from the general form of Roorda's result, equation (C6).

(Received 14 Apri/1969; revised 16 January 1970)

A6cTpaKT-HenHHeli.Hali 3a,l:\a'la HeCHMMelpH'IecKoro np0ll.\enKHBaHHlI KOHconbHoli. KonOHHbl, 3aKpen-,

neHHoli. Ha ee KOHl.\e lKecTKoli., HaKnoHeHHoli. npoBonoKoi! H HarpY)l(eHHoli. TaMlKe ropH30HTanbHoi! cHnoi!,

,l:\OnycKaeT TO'lHoe perneHHe, Hali.,l:\eHHOe y)l(e paHbrne. KOHCTPYKl.\HlI '1YOCTBHTenbHa K Ha'lanbHblM

HenpaBHnbHOCTlIM, ecnH paccMaTpHBaeTcli cnY'lai!, B KOTOpOM ponb HenpaBlwbHocTei! HrpalOT COBMecTHali

0606l1.\eHHali lKecTKoCTb npOBonOKH H l.\eHTpanbHali nHHHlI KOnOHHbI. Tenepb ,l:\aeTCli perneHHe TaKoi! lKe

caMoi! 3a,l:\a'lH, Hcnonb3Yll 06ll.\Hi! MeTO,l:\ paC'IeTa npeMolKeHHbli! Koi!TepoM ,l:\nll nO'ITH 3aKpHTH'IecKoro

paBHOBeCHli. OKa3b1BaeTClI, 'ITO HaCTOllll.\ee perneHHe, KaCalOll.\HeClI Harpy3KH Bblrne KpHTH'IeCKoi! TO'lKH B

3aBHCHMOCTH OT nporH6a, ,l:\nll "H,l:\eanbHoi! KOHCTPYKI.\HH" lIBnlleTCli aCHMnTOTH'IecKHM npe,l:\CTaBneHHeM

COOTBeTCTBYIOll.\erO TO'lHO£O pe3ynbTaTa ,l:\nll 3aTyxalOll.\ero Mano£O nporH6a. TIPH nonOlKHTenbHOM

nporH6e, npH6nHlKeHHble 3Ha'leHHlI ,l:\nll Harpy3KH no cpaBHeHHIO C TO'lHbIMH lIBnlllOTCli MeHbrnHMH B

aCHMnTOTH'IecKOM perneHHH. )],enaeTCli nO,l:\06Hbli! BbIBO,l:\ ,l:\nll Harpy3KH BbIlIY'lHBaHHlI B 3aBHCHMOCTH OT

aMnnHTY,l:\bl HenpaBHnbHocTei! ,l:\nll HerrpaBHnbHO CHa'iana M3rOTOBneHHoi! KOHCTPYKI.\HH jKoHe'lHali

0606ll.\eHHali lKeCTKocTbj.


