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POST-BUCKLING ANALYSIS OF AN ELASTICALLY-
RESTRAINED COLUMNY

R. Hartkal and W. NACHBARS

Department of the Aerospace and Mechanical Engineering Sciences,
University of California, San Diego, La Jolla, California

Abstract—The nonlinear problem of the asymmetric snap-through buckling of a cantilever column that is
restrained at its tip by a stiff, inclined wire, and is loaded laterally by a tip force, admits an exact solution which
was determined previously. The structure was found to be imperfection-sensitive if one considers the com-
bined extensional stiffnesses of the wire and of the column centerline to play the role of an imperfection. The
same problem is now solved using the general Koiter method of analysis for the near post-buckling equilibrium.
This present result for the post-buckling load vs. deflection relation for the “perfect structure™ (infinite ex-
tensional stiffnesses) is shown to be an asymptotic representation of the corresponding exact result
for vanishingly small deflection. At positive deflection, the approximate values for load in the asymptotic repre-
sentation are less than the exact values. A similar conclusion is drawn for the buckling load vs, imperfection
amplitude relation for the imperfect structure (finite extensional stiffnesses).

NOTATION
A cross-sectional area
Az, Ay defined by equations (35¢, d)
a length of undeformed wire
a* length of deformed wire
B, defined by equation (56b}
C amplitude of the linear buckling mode
d end-shortening of column, equation (3)
E Young’s modulus
e linear strain of column centerline, equation (7b)
e, strain in wire, equation (2}
€41 = e, sin® 8, equation (7a)
F lateral force applied to column
F, defined by equation (20d)
f nondimensional applied force to column, equation (8a)
I moment of inertia
J K nondimensional Lagrange multipliers, equations (8b, ¢)
K{y) defined by equation (16)
i length of undeformed centerline of column
P axial compressive force on column

Pyly), Ps{y)  second and third order terms in the potential energy
T tensile force in wire

UXx) displacement of the column centerline in the X direction
u(x) = U/l

Vv total potential energy

vV defined by equation (4)

Vi nondimensional potential energy, equation (9)

V¥ potential energy with K = K{y); equation {17a)}
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THE PROBLEM of buckling of a cantilever column restrained by a stiff wire inclined at an
angle 8, and loaded by a lateral tip force F (see Fig. 1), was solved exactly in [1]. It was
shown that the combined extensional stiffnesses of the column centerline and the restraining
wire can be considered to act as imperfections to a “perfect” structure that has an in-
extensible centerline and is restrained by an inextensibie wire. It was found that the snap-
through buckling load of the “imperfect” structure is sensitive to such imperfections.
The two extensional stiffnesses are combined in a nondimensional parameter . In [1],
the problem was solved for finite stiffnesses (1 > 0), and the solution for infinite stiffnesses
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coordinate along column centerline

= X/l

lateral displacement of column centerline

= Y/l

tinear buckling solution for perfect structure, equation {28b}
nondimensional load parameter, equation (31)

Lagrange multiplier, equation (4)

= W1)tan @ = Y)/ltan @, tip deflection parameter

first variation of ¥,

a small number

admissible variation of y(x)

angle between wire and horizontal in the undeformed state ; see Fig. 1
deformed value of 8

axial compressive stiffness parameter of the column centerline, equation (42b)
total elastic compliance parameter, equation (56a)

elastic compliance parameter of the wire, equation (42a)

shape of linear buckling solution: y; = Co

classical value for buckling
critical value for snap-through
wire

values for finite elastic compliance
valuesat x = |

1. INTRODUCTION

was found by going to the limit (# — 0).

Fi16. 1. Geometry of column restrained by an inclined wire and loaded by a lateral tip force F.
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A general study of the local character of critical points in the theory of elastic stability,
in particular with regard to post-buckling behavior and the effects of initial imperfections,
has been developed by Koiter [2]. Further development of the theory for systems des-
cribed by a finite number of generalized coordinates has been made recently by
Thompson [3,4] and by Roorda [5, 6]. In the more general terminology, as is used for
example by Thompson [4], critical points of “perfect” structures are called branching
points or points of bifurcation. There are three general types of branching points: (a)
asymmetric; (b) stable symmetric; (c) unstable symmetric.

In the present problem for the inextensible centerline and wire, u = 0, the branching
point is asymmetric; the problem treated in [1] and in this paper is a simple illustration
of a continuous elastic structure that exhibits an asymmetric point of bifurcation. For u
positive but small compared to unity, the equilibrium paths in the load vs. deflection
plane are close to those found for the inextensible wire. For the imperfect structure,
u > 0, the critical points are of the snap-through type.

In this paper, the problem of Fig. 1 is solved using Koiter’s method for post-buckling
analysis as, for example, [7]. In this method, the buckling mode for the perfect structure
is found by making an energy functional stationary subject to the nonlinear constraint
of the wire. It was assumed in [1], for u sufficiently small, that the linear bending approxi-
mation is adequate for representation of the energy. The geometrical nonlinearity, which
is essential for the snap-through instability, arises in this problem from the nonlinear
constraint imposed by the wire. The buckling mode is then substituted back into the energy
functional in order to find the near post-buckling behavior and the imperfection sensitivity
of the structure.

The results obtained by Koiter’s method agree very well with results presented in [1];
these results give asymptotic representations of the exact solution when the post-buckling
deflection or the imperfection tend to zero. This is verified in Appendices A and B, in
which the asymptotic expressions for the post-buckling behavior and imperfection
sensitivity of the structure are obtained from the exact expressions found in [1].

The specific methods developed for systems described by a finite number of generalized
coordinates can also be applied to this problem and yield the same results. In Appendix C,
the method of Roorda [6] is demonstrated.

These results offer a transparent example of the application of Koiter’s method to a
simple problem and, additionally, introduce two points that are perhaps novel. The
first point is the use of the method for imperfections that are not geometric. The second
point is that the method is applied to a case where the energy functional for the perfect
structure is not found as the limit of the functional for the imperfect structure as u tends
to zero. This is the case where a nonlinear kinematic constraint, included in the functional
by use of a Lagrange multiplier, necessitates as a first step the elimination of the multiplier
before the energy functional can be written in the usual form.

2. ENERGY FUNCTIONAL FOR THE PERFECT STRUCTURE
For the perfect structure (Fig. 1), the total potential energy V is

V= %EI f l [d2Y(X)/dX 22 dX ~ FY()). (1)
0
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With the wire and column centerline both imextensible, the prebuckling displacements
are zero. Buckling will occur when, for a nontrivial displacement Y(X), }' iy stationary
subject to the following two constraints: the strain ¢, in the wire is zero for this displace-
ment, where, as in [1],

e, =1"1sin2 00 Y(lycot 0~ U(D)+ (1) [Y(D)]2+Q2D " [UDT} = 0 (2

the end-shortening d of the column centerline is zero for this displacement, where
1 I
d= U(I)_Zf [dY(X)/dX]?dX = 0. (3
0

With the introduction of the Lagrange multipliers « and f, we then seek to make the
functional V stationary, where
V=Vioe,+pd. (4)
With use of nondimensional variables
x = X/I, wx)= Y/, u(x) = U/l {S)
we can write, with primes denoting x-differentiation,

. EIf (! 5 2F1? 2al sin? 0 2817 o
_ ” X — I 6
v “21Uo (y")* dx I w1+ 5 et e (6)

where the strain parameters ¢,,; and ¢ are defined as

1 .
e, = y(l)cotH—u(l)Jr,)iy(l)zJriu(l)2 = ¢,/sin? 0 (7a)

wl

1
e = u(l)—%j (v')? dx. (7b)
(1]

Equation (6) takes a more convenient form with the introduction of the following para-
meters:

f= %l—: tan 0 (8a)
K = %ﬂs,g}z,f? (8b)
J = fﬂ_; (8¢)
=2 (s)

The functional V; can then be expressed as

1
v, = f (') dx —2fi(1) cot 0+ 2Ke,, + 2Je. )
0
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Let y(x) be a function for which ¥} is stationary, and let §(x) = yx)+enlx), with Jg] « 1
and #(x) an admissible variation. Then a necessary condition for stationary V,

oV, =0 (10a)
is
i)
Vi +enli-o = 0. (10)
g
Further conditions at ¢ = 0 are
v, oV, oV
.-.....—-—-::0’ e = U —=0- 10C3d3
au(l) oK a7 (10c,d.¢)
Application of equation (10c) to equation (9), with use of equations (7a, b), gives
v,
= 2K[—1+u{1}]+2J = 0. 11
Saihy = 2K Trulll+ (1)

However, the assumptions of linear bending theory and small strains, that have already
been adopted, imply that, for consistency, we must set

1—u(l) = L (12)
Hence, in view of this, equation (11} gives
K=J (13)

Equation (10b) when applied to equation (9), together with equations (7a,b) and
equation (13), gives the following variational equation to determine y(x):

JA (v'n" —Ky'n)dx+n(1)}{K[(1)+cot 8] —f cot 8} = 0. (14
o

At x = 0 we assume clamped conditions, while at x = 1, equation (14) gives the natural
boundary conditions. From equation (14) we get the Euler-Lagrange differential equation
for y(x),

Y+ Ky =0, 0<x<i (15a)
and the following four boundary conditions:
y:y':o atx =0 (Isbac)
yU = 0
at x = 1. {15d,¢)
V' +fcot0—K(y+cotf—~y)=0

In addition, the two constraints

e, = y{1)cot 8-u(1)+:12-—y(1)2+;—u(1)2 = { {15

e =ull)—y [orax=o (15¢)

are to be satisfied ; this also follows from equations (10d, e).
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3. BUCKLING AND POST-BUCKLING OF THE PERFECT STRUCTURE

The exact solution satisfying equations (15a--g) was found in Section 4 of [11: there
it was determined using the limiting case of infinite stiffnesses for an elastic wire and an
elastic column centerline. To use the Koiter technique in the present preblem. in which
infinite stiffnesses (zero compliances) have already been assumed, it is necessary to elimi-
nate the Lagrange multipliers K and J from the expression for the energy functional,
equation (9). For this, we use the equilibrium conditions, equations (13} and {15d). to
write

y(1)y+fcotd

K=J=Ky= Y 1O It
) w1+ cot B—y'(1) te)

With this substitution into equation (9), the functional ¥¥(y) is formed.
1
VE0) = |07 dx=2f5(1) cot 0+ 2K(ews +0 (17a)
0
where, with use of equation (15g).

1 1! 11t 2 )
e, te= y(l)c0t9+fy(1)2-—~~[ () dx+— 7J‘ (y)Ydx| . {17b)
2 2 2|2, )

0

It is easily verified that the functionals V¥(y) and V;(y) have the same extremum y{x),
which is the solution to equations (15a-g). Hence, in place of equation (10a), we seek to
make

oVi(y = 0. (18)

For y and y' sufficiently small, K(y) can be represented by a power series, and the
functional V*(y) can then be rearranged, grouping together terms of equal degree in y
or y-derivatives, 1.e.

Vi(y) = Py)+ P+ ... (19)

We write

L
(cot 0) Ll + L‘J‘}

[cot 0+ y(1)—y(1)] 7! cot 0

tan 0{1 —[y(1)—y'(1)] tan 6
+() =y ()P tan® - .|

and substitute into equation (16). Then, if the Q{y) are polynomials, homogeneous of
degree i, in y and y-derivatives, we can write

K (e, +¢) = Q:(0+Q0+Qsn+ ... (20a)
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where [setting y(1} = y,, y (1} = ¥}, etc],

04(y) = fy, cot b (20b)
Q.0 = niy7V —fri =yl
1 1
+5f [y%— fo oy dx] (20c)

1 1
0s0) = =3 | &7 dxtyi-+fh) tan 0
0
+y1 By Y1, 97) (20d)

In equation (20d), F, is a homogeneous polynomial, of second degree in its arguments,
whose further expression is not necessary. Substitution from equations (20) into equa-
tions (17a, b) and comparison with equation (19) gives

Py(y) = fo (") dx+20,(y) = J‘ . [ =)V Tdx+y 207 +/2¥i—y)] (21

1
Py(y) = 2Q5(y) = —tan 0(yy +/¥1) f ()? dx+2y,F,. 22
Q0
The buckling load and buckling modes are then found from the stationary condition
{[10], equation (3.5.3)},
OP,(y) =0 (23a)

together with the constraint, equation (15f), which is reduced to lowest degree for small y,
Viz.

y, = 0. (23b)
Equations (21) and (23a, b) give the following differential equation

YU+ =0, O<x<l1 (24a)

and the boundary conditions
y=y =0 atx =0 (24b,¢)
V=y=10 at x = 1. (244, ¢}

The solution of equation (24a) that also satisfies equations (24b, ¢, d) is

Wx) = C{sin / f—sin[\/ f(1 —x)] -/ fx cos /f}. (25)
Condition (24e) becomes, upon substitution from equation (25),
sin \/ f—./ feos /f= 0. (26)

The smallest positive root of equation (26) is f = f.,

f. = 2019 (27)
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which is the nondimensional buckling load. The buckling solution y = yg(x) and buckling
mode @(x) are
@(x) = sin / f. —sin[\/ fi(1 = x)] -/ fix cos \/ f. (28a)
ve(x) = Colx). (28b)

The next approximation to equation (18) for small-deflection post-buckling represen-
tation is

O[Py(y)+ P3(y)] = 0. {294)

The solution to equation (29a) must also satisfy the constraints, equation (15f, g), to the
same order of approximation, viz.

1! 1
y, cot 6 — f () dx+-yi =0. (29b)
20 2
In Koiter’s method, the variational equation (29a) is approximated by the condition
d
G [P2va)+ Palyg)] = 0 (30}

which is asymptotically valid as the amplitude C and the parameter z,
/
[—-=
e
are each small compared to one. The square bracketed term in equation (30) is evaluated
with the use of equations (28a, b) and the repeated use of equation (26) as an identity in /.
Since ¢(1) = 0, we obtain from equations (21} and (22),

-

(31)

I

1
Py(Cg) = C* j (") —f(¢')] dx (320)
(6]

1

PyCg) = —tan 0C¥@ +1 ) f () dx. (32b)

0

From equations (28a) and (26),

1 1 ,
[ @7 ax = [ (0 oosty/ 1= —eos y 112 dx = 3 fsin® g, (%)
0 0

1 1 i 1 .

[0 an = [ fsinly/ g1 dx = 572 sn 1 (33b)
0 0

o'(1) = / fo—sin /[, (33c)

(1) = —fi. (33d)

Therefore, from equations (32),
Py(Co) = 52C* f2sin® /[ (34a)
Py(Co) = 1C3 fZ1an Osin’ |/ f,. (3db)



Post-buckling analysis of an elastically-restrained column 1441

By writing equations (34a, b) equivalently as

Pyyg) = Az(1 “‘"?“)Cz, Py(yp) = 4;5C° (35a,b)
with
Ay = f2sin? /f, (35¢)
Ay =4 f2tanOsin®/ f, (35d)
the post-buckling condition, equation (30), is written
d VAP 3
— — A3CP ] = 0. 36
sl +(-g)ee e 09
For C # 0, equation (36a) gives
24, f
e B R B 37
=324 N

Since A, > 0 but A, < 0, because the angle \/ f, (rad.) is in the third quadrant, then C
is positive for 0 < f < f,. The tip deflection parameter 9.

& = y1)tan 0 (38)

as a function of C is obtained from equation (29b) by putting y = y(x) in the integral, viz.

1 1
yi+2y, c0t6~—§C2f (@) dx = 0. (39
0
The root of equation {39) which vanishes for C = 0 is
yy = tan 83C? f,sin® |/ f)+0(C*). {40)
By combining equations (37), (38) and (40) to eliminate C, we obtain
S 3,/
o=l — 41)
L NaA

4. IMPERFECTION SENSITIVITY

As shown in [1], the elastic extensional compliance of the wire and the elastic axial
compressive compliance of the column play the role here of imperfection parameters,
because, in the limit as these parameters tend towards zero, the solution for the elastic
case approaches that for the inextensible case discussed in the preceding section. It will
now be shown that the results from the inextensible case can be used to determine an
asymptotically valid formula for the critical snap-through load f,, in the elastic case.

Consider now the nondimensional form V,, of the strain energy for the elastic case;
the same nondimensional nomenclature is used as previously, with the additional defini-
tions now of the wire compliance parameter v,

_; _E,APsin0
yviilg w0

Bl {42a)
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and the axial stiffness parameter 2 for the column,
. EAP 12h
A D e ik
El e

Then ¥, is a functional of y(x) and u(x) and is defined by

1 Ly 7
Vo= [ axe [u'«f'(,.v'v
o g 2 ]

From the Schwarz Inequality, and the condition that 1(0) = 0, we find that

1 ’{’22 ]‘,IS.“ zl 11‘! .2»_.2 »
fo[u ~—2(y):i dxz{f“ [u —z(y}z}dxj rz(uu(l)w.ifo{y)zdx] = e {44}

The functional V¥, defined by

2

dx+vle2, —2fWl)cot . (43

i
V= f () dx+ie?+v el =201 cot 0 (45)
o

bears the following relationship to V;,, assuming that 7, v"!, fand 0 are the same for
each:

1. For every admissible y(x) and u(x), Vi, = V£,
2. V. and V¥ have the same equilibrium states.
3. At an equilibrium state u(x) and y(x), Vj, = V£

Conclusion (1) follows at once from inequality (44). The Euler-Lagrange equations for
V¥ can be readily shown to be equal to those given in {17 for V},. Finally, the equilibrium

conditions can be shown to lead [with (0} = 0] to
w' —4y')? = const. = ¢, 0< x < | {46}

whereupon it is seen that the strict equality bolds in (44) for equilibrium. From these
remarks, it is seen that if V,, is positive definite in a neighborhood of the function space
about the equilibrium solutions u{x) and y(x), then V' * is positive definite also in the same
neighborhood.

Now compare V% with V,, equation (9). We know [4] that the nondimensional La-
grange multiplier K must be, in a dimensionless form, the force in the wire that imposes
the constraint ¢,,, = 0. It also follows by continuity arguments that K is the limit of the
force in the wire for the case of vanishing wire and column compliance, viz. for

y— 0 and PRI R

This means the the nondimensional force v7'e,, in the elastic wire must be given
asymptotically, for small v and 171, by

v ey, = K[14+0(. 2] (47a)

Similarly, the nondimensional axial force ie in the column is given asymptotically, for

small v and 471, by
se = J[1+0(v, 2 YL 470

The physical meaning of equations (47a, b) is readily derived. From the form of equa-
tion (4), it is evident that o must be equal to the product of the force T in the wire by the
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length a of the wire, i.e.
o = Ta = Tlfsin 8. (48)

Therefore, from equation (8b),

[sin® 8 #siné
= = T. 49a
K== =& (49a)

If the force in the elastic wire is called T, then T, = E,_4,e,,, and

E A Psin’8 e Psin®
-1 . Cwflw - w T:r 49b
Vo fm El sin?0  EI 49b)

Upon substitution from equations (49a, b), equation (47a) takes the form
T, = T[1+0(v, A" Y)]. (49¢)

Similarly, for the rigid centerline on the column, § must equal the axial compressive
force P in the column; then, from equation (8c)

2
J o= % . (50a)
On the other hand, the elastic column axial force P, is given by P, = Ede, and also
e = Egjze SR (50b)
Hence, we get a formula similar to equation (49¢c):
P, = P[1+0(v,A™1)]. (50c)
In view of equations {47a) and (47b), and the conditiont K = J, equation (45) becomes
V¥ = V¥—K(e+e,)[l—-0 i1 h)]. (51)
But
e,, = vK[1+0(v, A" )] (52a)
e = A"'K[1+0(, A7 Y). {(52b)
Then
Vi =Vi—(v+A K1 =[O, A7} (53)

For K? in equation (53) we substitute [K(y)]* from equation (16), and set y = yp with C
to be determined. We find that

[K(yp)]* = f2(1—2C tan §sin |/ f)) (54)

+ higher ordertermsin z and C. For z 5 0, the amplitude C has a nonzero limitas(v+ 1~ ")
tends to zero [ie. the limit found in equation (37)]. Hence, only terms of lowest order in
the small quantities C and z need be retained in [K(y)]* when equation (35) is combined
with equation (54) to obtain the following asymptotic expression for the total potential

1 See Appendix A of [1] for proof that P, = T, sin 8 generally for small strains.
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energy in equation (53):

VE = A2C* + A;C* + B uC +(v+ A~ Yy? (35

where
u=(v+i YHtan? (56a)
B, = 2fZsin |/ f. cot 0. (56b)

The conditions for a stationary point f = f,,, C = C,, on the load vs. deflection curve
fvs. C follow from equation (55):

)%

o 0=24,2C+34,C*+B,u=0 {57a)
P2V
%;_e = 0=24,2+64,C = 0. (57b)

The solution of equations (57a, b) that gives positive C,, for g > 0 is

34,8, )}
o =+ > 14 (58a)
2
C., = ) (58b)
cr T 3A3Zcr"

The instability of equilibrium at f,,, C., can be shown to follow directly from equa-
tions (57a, b), since, for z = z_, and arbitrary C, the total potential energy can be written as

V¥ = A5(C—C,)*+const. (59)

The cubic form indicates that the total potential energy is not a minimum at C = C,,,
and instability of equilibrium at f,,, C,, then follows immediately from the theorem of
Cetaev [11].

We determine f,, by substitution into equation (36a) from equations (21b), (21d) and
(34c¢); thus we get the equation for imperfection sensitivity of the snap-through load,

Jo_ (o)

e
This is exactly the asymptotic expression of f,,/ f. for u — 0 that is derived in Appendix B
below from the results of [1].

5. NUMERICAL RESULTS AND DISCUSSION

The results for the post-buckling equilibrium of the “perfect” structure, equation (41),
are shown in Fig. 2 and compared to corresponding results from [1]. Figure 3 gives a
similar comparison for the imperfection sensitivity of the snap-through load, equa-
tion (60), again with good agreement.
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FiG. 2. Comparison between exact and asymptotic solutions for the post-buckling equilibrium of the
“perfect” (p = 0) column.
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FiG. 3. Comparison between exact and asymptotic solutions for the buckling load f,, of columns with
elastic parameter u > 0.
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APPENDIX A
Past-buckling behavior from 1]

An asymptotic expression, valid for § — 0, is derived from the exact solution for the
post-buckling equilibrium load f vs. tip deflection J as given parametrically in k by two
functions & = 6, (x), f = f.(x) that are equations (28a) and (28b) of [1]:

KZ
§.(k) = zf; (Ala)
K 3 -
fili) = x2(1+?’w‘s‘f”~‘) (Alb)
2
K (k) =sink—xcosk (Alc)
Ky(x) = Ltx? —sin® k + 1k sin 2. (Ald)

Let x, be the critical value of , [K (k) = 0]. For k close to x,, we can assume that A = k. — &
is also small, and we have

K, (k)  —Ax? cosk, {A2)
K,(k) = Ky(k) = ixtcos k.. (A3)
So, asymptotic expressions are
d.(x) =~ 4A* {Ad)
k) = (k. —AP(1 —4A) & k7 —~6Ak,. (AS)

Substituting equation (A4) into equation (A5), we get

3 ,
}:{K) == Kf( [ V}c\'ié) . (Af)}

<

Since x? = f,, then equation (A6) becomes equation (41).

APPENDIX B
Imperfection sensitivity from [1]
For small positive values of the imperfection parameter u, we seek to write

Jer = JA1 = By') (B1)
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where y and B are constants. For u > 0, the pre-buckling equilibrium relation between
d and fis given parametrically in k by two functions 6 = é_(x),f = f.(k) that are equations
(25) and (26) of [1]:

5_(x) = g[l ~(1—2,m2%) ] (B2a)
f(k) = K2|:1 +‘3‘—('}iﬂ] (B2b)

Here, K, and K, are defined in equations (Alc,d) above. Upon combining equations
(B2a, b), we get

sin K
K,

f-G) =x? {1 +——[K,— (K- 2#K2K2)%]} : (B3)

Since buckling occurs when df /dé = 0, then the critical value of « is the smallest positive
root of the equation

i:i(’?—'—) = 0. (B4)
The buckling load f,, is therefore given by
Jo = J=(Ke). (BS)
Equations (B4) and (B5) apply for g > 0; for u = 0, x, = 44938 and
fok) =f = k2 = 2019. (B6)
For small u, we can assume that
A=xk—x, (B7)
is also small. Hence, [using the fact that K,(x_) = 0],
K (k) = sink,—k, cos Kk, ~ — Ak, sink, = AxZ cos K, (B8a)
Ki(k.) = Ky(k,) = 3x2 —sin? k+4x, sin 2k, = 1k cos? k,. (B8b)

Substituting equations (B8a, b) into equation (B3), we have

f-lky) = flk.—A) = fXA)
and

2 sin k,

SHA) & (k. — A)? {1 +

2 4 2 2 6 2 ..\4
———5 —— K¢ cos kA —(x? cos? k. A? — uk® cos? k
K?COSZKC c ¢ ( c c I c c)]

2
~ (k. —A) {1 +K—[—A +(A? —MK?)*]}
~ K2 —4AK, + 2K (A — uc?)E (B9)
Equation (B4) is equivalent to

df* )
dA

2Kk A
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Since A > 0, equation (B10) implies

A = 3r /3.
Substituting back into equation (B9), we obtain
Sor = K21 =2/3p). (B11}

This expression and equation (A7) previous are asymptotic, of course, because in their
derivation terms of order A% were neglected in comparison to terms of order A.

APPENDIX C

Results obtained by use of Roorda’s method [6]

Let the amplitude C of the linear buckling mode shape, equation (20), be taken as
the single principal generalized coordinate u, in accordance with the development and
notation in [6]. The equilibrium equation in the notation of equation (10} of [6] is:

é | P .
ﬂ('sm)%-p) = Sulns+i(sulu‘u1u1 +ZSpu1u1pu1) =0. (Cl)
The equivalence of this equation to equation (57a) in our paper is seen by the following
correlation of nomenclature (our nomenclature is on the left):

C=u (a)
Vi+AV, = s, ., +certain terms independent of u, (b)
}% = I+p (c)
H=¢ (d)

from which it follows from equation (C1) and equation (57a) that
24, = =S, (e)
345 = 5Suuu, (f)
B, = §,,.+0(p). ()
(C2)

Equation (11b) of [6], correcting the misprint in [6], is

ur = —:;Lp (©3)

Substitution from equation (C2) into equation (C3) gives the equilibrium equation for
the slope of the initial post-buckling path for the ideal structure (¢ = 0) as

24,( f
= ——|=— C4
¢ 31‘13(];- 1) 4

which is the same as our equation (23).
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For the slightly imperfect structure, ¢ > 0, equation (C1) defines an equilibrium path
p(u,) along which the stationary value of p is p* at u; = u¥:

S
ut = - P, (C5)

uyuguy

Substitution for u* in equation (C1) gives the stationary value for p* {cf. equation (14)
of [6]},

S k2
p* — i[zsuwlul ulsg]_ (C6)

SP“lul

that is a necessary condition for snap-through. With proper choice of sign, equation (C6)
is seen to be identical to equation (58a). The form taken by equation (58a), especially the
dependence of the snap-through load on the square root of the imperfection for small
imperfections, is to be expected from the general form of Roorda’s result, equation (C6).

(Received 14 April 1969 ; revised 16 January 1970)

AbcTpakT—HenuueliHas 3amaya HECHMMETPHYECKOTO NMPOLUEIKUBAHUA KOHCOJIBHOM KOJIOHHbLI, 3akpen-,
JICHHOM Ha ee KOHIIE KECTKOM, HAKJIOHEHHO! IMPOBONIOKOH M HArpyXeHHOM TaMe rOPU3OHTAJILHON CHITON,
[IONYCKAaeT TOYHOE pellieHWe, HalileHHoe yxe¢ paHblie. KOHCTPYKLMS 4yBCTBHUTENIBHA K HAYaNbHBIM
HENMPAaBUIILHOCTSIM, €C/I PACCMATPHBAETCA Clly4ai, B KOTOPOM POJIL HENPAaBUIILHOCTEH UTParOT COBMECTHasN
00001LIeHHas KECTKOCTh NPOBOJIOKK M LICHTpaJibHAs MMHUA KOJIOHHBI. Tenepnr maercs pelieHne Tako# xe
caMoii 3a1auM, UCNIONb3ys OOIMiI METOL pacyeTa IpeaoXeHHbi KolTepoM it IOYTH 3aKPUTHYECKOTO
paBHOBecust. OKa3bIBA€TCA, YTO HACTOSLLEE PELICHUE, KACAIOLMECH HATPY3KH BBILIE KPUTHYECKOH TOYKH B
3aBMCHMOCTH OT mporuda, 1uist ‘‘naeanbHOW KOHCTPYKUMH'® ABIIAETCH ACMMOTOTHYECKMM NPEICTABICHHEM
COOTBETCTBYIOIIETO TOYHOFO pe3yibTaTa Juld 3aTyXarollero manoro mnporudba. IIpH noJSIOKHTEIBHOM
nporude, NPUOMKEHHBIE 3HAYEHUN IS HATPY3KH MO CPABHEHHMIO C TOYHBIMU SBJAIOTCA MEHBLUUMHU B
aCHMIITOTHYECKOM pellicHMH. JlenaeTcs noxoOHBI BLIBOA AN HATPY3KM BbITy4UBAHUS B 3aBHCUMOCTH OT
AMIUTMTYAbl HENPAaBMUIBHOCTEH AJIS HENPAaBMIBHO CHAYajda M3rOTOBJIEHHOW KOHCTPYKLIMH [KOHEYHas
06001eHHAs KEeCTKOCTD/.



